Vehicle Sideslip Angle Estimation Using Two Single-antenna Gps Receivers

نویسندگان

  • Jong-Hwa Yoon
  • Huei Peng
چکیده

Knowing vehicle sideslip angle accurately is critical for active safety systems such as Electronic Stability Control (ESC). Vehicle sideslip angle can be measured through optical speed sensors, or dual-antenna GPS. These measurement systems are costly (~$5k to $100k), which prohibits wide adoption of such systems. This paper demonstrates that the vehicle sideslip angle can be estimated in real-time by using two low-cost single-antenna GPS receivers. Fast sampled signals from an Inertial Measurement Unit (IMU) compensate for the slow update rate of the GPS receivers through an Extended Kalman Filter (EKF). Bias errors of the IMU measurements are estimated through an EKF to improve the sideslip estimation accuracy. A key challenge of the proposed method lies in the synchronization of the two GPS receivers, which is achieved through an extrapolated update method. Analysis reveals that the estimation accuracy of the proposed method relies mainly on vehicle yaw rate and longitudinal velocity. Experimental results confirm the feasibility of the proposed method.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lateral Stability Control of Electric Vehicle Based On Disturbance Accommodating Kalman Filter using the Integration of Single Antenna GPS Receiver and Yaw Rate Sensor

This paper presents a novel lateral stability control system for electric vehicle based on sideslip angle estimation through Kalman filter using the integration of a single antenna GPS receiver and yaw rate sensor. Using multi-rate measurements including yaw rate and course angle, time-varying parameters disappear from the measurement equation of the proposed Kalman filter. Accurate sideslip an...

متن کامل

State and Parameter Estimation for Vehicle Dynamics Control Using Gps

Many types of vehicle control systems can conceivably be developed to help drivers maintain stability, avoid roll-over, and customize handling characteristics. A lack of state and parameter information, however, presents a major obstacle. This dissertation presents state and parameter estimation methods using the Global Positioning System (GPS) for vehicle dynamics control. It begins by explain...

متن کامل

Sideslip Angle Estimation Based on GPS and Magnetometer Measurements

This paper proposes a cost-effective method to estimate the vehicle sideslip angle on various frictional surfaces on banked roads. This paper demonstrates that the vehicle sideslip can be estimated by combining measurements of Global Positioning System (GPS), Inertial Measurement Unit (IMU), and a magnetometer in the Kalman filter framework. Among all the measurements, the magnetometer is the m...

متن کامل

Iranian Permanent GPS Network Receivers Differential Code Biases Estimation Using Global Ionospheric Maps

Measurements of the dual frequency Global Positioning System (GPS) receivers can be used to calculate the electron density and the total electron content (TEC) of the ionosphere layer of the Earth atmosphere. TEC is a key parameter for investigating the ongoing spatial and temporal physical process of the ionosphere. For accurate estimation of TEC from GPS measurements, GPS satellites and GPS r...

متن کامل

Integrating Inertial Sensors with GPS for Vehicle Dynamics Control

ABSTRACT This paper demonstrates a method of estimating several key vehicle states – sideslip angle, longitudinal velocity, roll and grade – by combining automotive grade inertial sensors with a Global Positioning System (GPS) receiver. Kinematic Kalman filters that are independent of uncertain vehicle parameters integrate the inertial sensors with GPS to provide high update estimates of the ve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010